课文《黄山奇石》教学设计模板

发布时间: 2025-07-18 16:36:31

课文《黄山奇石》教学设计模板

一、 回忆导入

同学们,上节课我们初读了课文《黄山奇石》,并且学习了生字新词和课文的第一自然段.你们还记得吗?闻名中外的黄山风景区在什么地方呀?那里景色如何?

(引导联系第一段回答,板书:神奇、有趣)

二、激趣导入

这节课,老师来当导游,带大家去欣赏黄山那有趣的奇石,感受大自然的神奇,领略祖国山河的壮丽。好吗?

(一) 整体感知

首先,请听老师范读课文的第二、三、四、五自然段,同学们边听边看课文的相关画面,同时留心观察:课文中介绍了哪几处奇石?

(学生回答,相机板书: )

(二) 分层学习

1、学习第二段

(1)课文中哪个自然段介绍了仙桃石?翻开书找一找。(出示图片)

(2)谁来读一读第二自然段?其他同学思考:仙桃石是什么样子?你从哪儿看出来?(看着图说一说)

(3)仙桃石这么大,又在这么高的地方,它是怎么来的呢?加上想像说一说。

(4)指导朗读

说的真神奇、真有趣,更有趣的是仙桃正好稳稳当当的放在了石盘里,像招待客人一样。其实这是谁的功劳呀?对,是大自然创造出来的,让我们读出仙桃石的有趣,和对大自然的赞美吧!

2、学习第三段

(1)同学们,刚才老师引导大家抓住仙桃石的样子,加上丰富的想想体会了它的神奇、有趣,那么,课文中是怎么介绍“猴子观海”的呢?(出示图片,指名朗读。)

(2)你从哪儿体会出“猴子观海”的神奇、有趣?请你们小组四人先一块儿读一读,然后互相说一说。(指名回答,从样子、位置来引导。)

①、哪句话写出了猴子的样子?看看图,再从课文中找一找。(出示句子)

②、哪几个词写出了猴子的动作?(变红)请你坐在凳子上学一学。有趣吗?

③、更有趣的是,猴子竟然在干什么?(看云海)

(欣赏云海:云上下翻滚,十分壮观,能看到这么美的云海,是因为黄山太高了。)

④、课文中哪个词也讲了黄山高呢?(陡峭)(出示图片)

(3)指导朗读

同学们,多么有趣的位置,多么有趣的猴子,你能读出“猴子观海”的神奇、有趣吗?

3、学习第四段、第五段

刚才,同学们通过小组合作学习,从猴子的样子和它所在的位置感受了“猴子观海”的神奇、有趣。接下来,老师请你们从“仙人指路”“金鸡叫天都”这两处奇石中选一出你喜欢的,自己读一读,然后看看图从它的位置、样子加上想象说一说它的神奇、有趣。(出示自学指导。指名回答,抓住一出体会到位,多请人补充。)

(1)“仙人指路”

①、仙人在什么地方?(学一学动作)

②、仙人是什么样子?

③、仙人好像在告诉人们什么?

④、指导朗读

(2)“金鸡叫天都”

①、金鸡在什么地方?

②、它是什么样子?

③、金鸡在叫什么呢?

④、指导朗读。

(3)齐读第四、五自然段。

4、指导背诵

同学们,神奇的大自然创造了人间奇迹,创造了黄山那一处处奇石,请选一处你喜欢的,看看图,读读课文,试着背一背,练好了像小导游一样介绍给你的同桌,好吗?

谁来背一背?

谁愿意来当小导游介绍黄山的奇石?(放音乐和画面)

5、学习第六段

同学们,黄山的奇石何止这四种啊,还有很多很多。课文中只提到名字的奇石有哪些?(出示第六段)

(1)自由朗读,找一找。

(2)请你选一处,模仿着课文的写法,想一想:他在什么地方?是什么样子?加上丰富的想象说一说。(练习,指名说)

(3)黄山还有许多没有名字的奇石呢,请你们仔细观察,展开想象起个名字,好吗?

(依次出示:仙人下棋、天鹅孵蛋、骆驼峰)

(4)指导朗读。

你们大胆、丰富而又合理的想象使黄山奇石有趣极了,下面,咱们来共同体会它的多、奇、趣吧!(齐读)

四、总结谈话

拓展阅读

1、高中数

材分析

圆是生在初中已初步了解了圆的知识及前面习了直线方程的基础上来进一步习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继习圆与直线的位置关系奠定了基础。因此,本节在本章中起着承上启下的重要作用。

1、知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

2、过程与方法:通过圆的标准方程的习,掌握求曲线方程的方法,领会数形结合的思想。

3、情感态度与价值观:激发习数的兴趣,感受习成功的喜悦。

重点难点

以及措施

重点:圆的标准方程理解及运用

难点:根据不同条件,利用待定系数求圆的标准方程。

根据内容的特点及高一年级生的年龄、认知特征,紧紧抓住堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,出包括:观察、操作、思考、交流等内容的流程。并且充分利用现代化信息技术的手段提高效率。以此使生获取知识,给生独立操作、合作交流的机会。法上注重让生参与方程的推导过程,努力拓展生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让生真正体验知识的形成过程。

习者分析

高一年级的生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数问题有自己个人的看法;从情感层面上生思维活跃积极性高,但他们数应用意识和语言表达的能力还有待加强。

问题情境引入法启发式法讲授法

法指导

自主习法讨论交流法练习巩固法

ppt件导

师活动

生活动

情景引入

回顾复习

(2分钟)

1、观赏生活中有关圆的图片

2、回顾复习圆的定义,并观看圆的生成flas_。

提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?

师创情景,引领生感受圆。

师提出问题。引导生思考,引出本节主旨。

生观赏圆的图片和动画,思考如何表示圆的方程。

生活中的图片展示,调动习的积极性,让生体会到园在日常生活中的广泛应用

自主

(5分钟)

1、介绍动点轨迹方程的求解步骤:

(1)建系:在图形中建立适当的坐标系;

(2)点:用有序实数对(x,y)表示曲线上任意一点M的坐标;

(3)列式:用坐标表示条件P(M)的方程;

(4)化简:对P(M)方程化简到最简形式;

2、生自主习圆的方程推导,并完成相应案内容,

师介绍求轨迹方程的步骤后,引导生自圆的标准方程

自主本中圆的标准方程的推导过程,并完成导案的内容,并当堂展示。

培养生自主习,获取知识的能力

合作探究(10分钟)

1、根据圆的标准方程说明确定圆的方程的条件有哪些?

2、点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:

(1)点在圆上

(2)点在圆外

(3)点在圆内

师引导生分组探讨,从旁**指导生在自和探讨中遇到的问题,并鼓励生以小组为单位展示探究成果。

生展开合作性的探讨,并陈述自己的研究成果。

通过合作探究和自我的展示,鼓励生合作习的品质

当堂训练(18分钟)

1、求下列圆的圆心坐标和半径

C1:x2+y2=5

C2:(x-3)2+y2=4

C3:x2+(y+1)2=a2(a≠0)

2、以C(4,-6)为圆心,半径等于3的圆的标准方程

则坐标原点的位置是()

A.在圆外B.在圆上

C.在圆内D.与a的取值有关

4、写出下列各圆的标准方程(1)圆心在原点,半径等于5

(2)经过点P(5,1),圆心在点C(6,-2);

(3)以A(2,5),B(0,-1)为直径的圆。

5、下列方程分别表示什么图形

(1)x2+y2=0

(2)(x-1)2=8-(y+2)2

(3)《圆的标准方程》-贾伟

6、巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图

指导生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。

生自主开展训练,并纠正习中所遇到的问题

巩固所知识,并查缺补漏。

回顾小结

(1分钟)

1、你到了哪些知识?

2、你掌握了哪些技能?

3、你体会到了哪些数思想?

采用提问的形式帮助生回顾和分析本节所

生思考并从知识、技能和思想方法上回顾总结。

培养生归纳总结能力

作业布置

(1分钟)

本87页习题2-2

A组的第1道题

布置训练任务

标记并完成相应的任务

检测生掌握知识情况。

本节主要遵循“回-导--展-讲-练-结”的高效式,遵循习的主体地位,鼓励生自主思考和探讨。

中要积极鼓励生多思考总结,在判断点与圆的位置关系中,要遵从生个性化的发展思路,鼓励生创造性的解决问题。

2、高中数

1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3、培养生观察、归纳能力。

1、等差数列的概念;

2、等差数列的通项公式

等差数列“等差”特点的理解、把握和应用

投影片1张

(I)复习回顾

师:上两节我们共同习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新

师:看这些数列有什么共同的特点?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)堂练习

生:(口答)本P118练习3

(书面练习)本P117练习1

师:组织生自评练习(同桌讨论)

(Ⅳ)时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式 (n≥1)

推导出公式:(V)后作业

一、本P118习题 1,2

二、1.预习内容:本P116例2P117例4

2、预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所的排列组合知识,正确地解决的实际问题。

一、前准备

复习:

1、(本P28A13)填空:

(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

(2)要从5件不同的礼物中选出3件分送3为同,不同方法的种数是 ;

(3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

(4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

二、新

◆探究新知(复习材P14~P25,找出疑惑之处)

问题1:判断下列问题哪个是排列问题,哪个是组合问题:

(1)从4个风景点中选出2个安排游览,有多少种不同的方法?

(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

◆应用示例

例1.从10个不同的艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

例位同站成一排,分别求出符合下列要求的不同排法的种数。

(1) 甲站在中间;

(2)甲、乙必须相邻;

(3)甲在乙的左边(但不一定相邻);

(4)甲、乙必须相邻,且丙不能站在排头和排尾;

(5)甲、乙、丙相邻;

(6)甲、乙不相邻;

(7)甲、乙、丙两两不相邻。

◆反馈练习

1、(本P40A4)某生邀请10位同中的6位参加一项活动,其中两位同要么都请,要么都不请,共有多少种邀请方法?

男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列

3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种。

当堂检测

1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目**原节目单中,那么不同插法的种数为( )

2、(本P40A7)书架上有4本不同的数书,5本不同的物理书,3本不同的化书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?

后作业

1、(本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位数?(2)能够组成多少个大于__45的正整数?

2、(本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

3、高中数

函数的偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的偶性进行了定量和定性的分析。材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数偶性的准确定义。然后,为深化对概念的理解,举出了函数、偶函数、既是函数又是偶函数的函数和非非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了偶性和单调性的联系。这节的重点是函数偶性的定义,难点是根据定义判断函数的偶性。 目标

1、通过具体函数,让生经历函数、偶函数定义的讨论,体验数概念的建立过程,培养其抽象的概括能力。

2、理解、掌握函数偶性的定义,函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的偶性。

3、在经历概念形成的过程中,培养生归纳、抽象概括能力,体验数既是抽象的又是具体的。 任务分析

这节内容生在初中虽没过,但已经习过具有偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入、偶函数的概念,以便于生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合生的认知规律,同时为阐述、偶函数的几何特征埋下了伏笔。对于概念可从代数特征与几何特征两个角度去分析,让生理解:函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的函数y=f(x),一定有f(0)=0;既是函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让生了解:函数、偶函数的矛盾概念———非非偶函数。关于单调性与偶性关系,引导生拓展延伸,可以取得理想效果。

一、问题情景

1、观察如下两图,思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称。从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。

对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1)。事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x)。此时,称函数y=x2为偶函数。

2、观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。

22可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x)。此时,称函数y=f(x)为函数。

二、建立

由上面的分析讨论引导生建立函数、偶函数的定义 1.、偶函数的定义

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作函数。如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数。

2、提出问题,组织生讨论

(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

(2)、偶函数的图像有什么特征?

、偶函数的图像分别关于原点、y轴对称) (3)、偶函数的定义域有什么特征? (、偶函数的定义域关于原点对称)

三、解释应用 [例 题]

1、判断下列函数的偶性。

注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]。

2、已知:定义在R上的函数f(x)是函数,当x>0时,f(x)=x(1+x),求f(x)的表达式。

解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),

而f(x)是函数,∴f(-x)=-f(x)。∴f(x)=x(1-x)。

(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3、已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论。

解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

任取x1>x2>0,则-x1<-x2<0.

∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2)。 又f(x)是偶函数,∴f(x1)>f(x2)。

∴f(x)在(0,+∞)上是增函数。

思考:函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

[练 习]

1、已知:函数f(x)是函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何。

2.f(x)=-x3|x|的大致图像可能是(

)

3、函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数。(2)函数f(x)是函数。 4.f(x),g(x)分别是R上的函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式。

四、拓展延伸

1、有既是函数,又是偶函数的函数吗?若有,有多少个? 2.f(x),g(x)分别是R上的函数,偶函数,试研究: (1)F(x)=f(x)·g(x)的偶性。 (2)G(x)=|f(x)|+g(x)的偶性。

3、已知a∈R,f(x)=a- ,试确定a的值,使f(x)是函数。

4、一个定义在R上的函数,是否都可以表示为一个函数与一个偶函数的和的形式?

4、高中数

考生姓名:赵春丽 科目:数

号: 41005211 专业班级:数四班

科:数 年级:高二 题名称:等差数列

一、程说明

(一) 材分析:此次一对一家所使用材为北师大版高中数必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的习的铺垫,可以让生更自主的探究,习等差数列。而我也是在这些基础上为她讲解第二节等差数列。 (二) 生分析:此次所带生是一名高二的生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听的孩子,给她讲,她也会很认真地听讲。 (三) 目标:

1、通过的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

2、通过对公式的推导,让她加深对内容的理解,以及会自己对公式的推导。并且能够灵活运用。

3、在中让她通过对公式的推导来明白推理的艺术,并且培养她习,做题条理清晰,思路缜密的好习惯。

4、让她在习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。

5、让她在习中发现数的独特的美,能够爱上数这门。并且认真对待,自主习。 (四) 重点: 1.让生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。

2、能够灵活运用公式并且能把相应公式与题相结合。

(五) 难点:

1、让生掌握公式的推导及其意义。 2.如何把所知识运用到相应的题中。

二、前准备

(一) 器材

对于一对一采用传统讲。一张挂历。

(二) 方法

通过对生活中的有规律数据的观察来提出问题,让生结合前一节所,思考有什么规律。从生活中着手有利于激发生的兴趣爱好,并能更积极地习。让生先独立的思考,不仅能让她对所知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—习知识—解答问题—得出结论—强加训练”的式方法展开

(三) 时安排

时大致分为五部分:

1、联系实际提出相关问题,进行思考。 2.以我式讲授相关章节知识。

3、让生练习相关习题,从所知识中找其相应解题方案。 4.生对知识总结概括,我再对其进行补充说明。 5.布置作业,让她后多做练习。

三、 (一) 提出问题 【引入】根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?

思考 1) 2) 3) 1,3,5,7,9.。.。.。.

2,4,6,8,10.。.。.。.

6,6,6,6,6.。.。.。

这些每一行有什么规律?

(二) 分析问题并讲解

1、通过观察每一个数与前一个数相差为同一个常数。再结合前一节所数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”

2、首项为 a1 ,公差为d。由思考题 1) 2) 3)可观察出什么?由生通过她的发现来推导总结出

ana1(n1)dnd(a1d

3、通过分析通项公式的特点,做下题(生自己分析,思考来做。) 例:已知在等差数列{an}中,a520,a2035,试求出数列的通项公式?

通过生做题再分析总结,用详细的语言讲解总结等差数列的性质: 等差数列{an},{bn} 1)

ana1anamd(nm1,n,mN)。

n1nm2) 若mnpq(m,n,p,qN)

pq则2anapaq。 则amanapaq(反之不真)。 3) 若mn,2m4) am,amk,am2k,am3k,,amnk也构成等差数列,公差为kd。

5) a1a2am,am1am2a2m,a2m1a2m2a3m,也构成等差数列,其公差为md。

26) 数列{can差数列。 7)

d}为等差数列,{anbn},{anbn}为等a1ana2an1a3an2akan1k

生根据所讲性质做练习题 练习: 1) a1a4a715,a2a4a645

{an}为等差数列,求an?

2) 已知等差数列{an} , a133,a775

求a2,a3,a4,a5,a6及an?

4、由以上公式,性质,让生总结。讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。 5.总结,串讲当日所

给出题目:12349899100 让她求其和Sn,并思考如何快速算?

(三) 布置作业

1、总结当日所。 2.做练习册上章节习题。

3、根据当日所以及上所讲求 的思考题,找出快速运算方法,并引导预习等差数列前n项和。

四、理念

以一种最简便,易懂的方式让生来习,一切以让生正确掌握知识,并能正确运用为理念。并能充分调动生和家老师的积极性为理念来

本节程内容较难,是下一节等差数列前n项和的铺垫。此节习通过联系实际,把数融入到生活中,从生活中探究习数。并提出问题,分析问题。把主动权交给生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,后再认真总结。这样可以加强她习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养生的思维能力,让她从自主习中探索适合自己的习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所。使她能灵活运用所

要符合生特点,才能更好地帮助习。

5、高中数

等比数列的前n 项和

( 第一时)

一。 材分析。

( 1)材的地位与作用:《等比数列的前 n 项和》选自《普通高中程标准数科书·数

( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

想方法,都是生今后习和工作中必备的数素养。

(2)从知识的体系来看:“等比数列的前 n 项和”是“等差数列及其前 n 项和”与“等比数列”

。 内容的延续、不仅加深对函数思想的理解,也为以后数列的求和,数归纳法等做好铺垫

二。情分析。

( 1)生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

( 2)对象:高二理科班的生,习兴趣比较浓 , 表现欲较强 , 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深

刻,因而片面、不够严谨。

(3)从生的认知角度来看: 生很容易把本节内容与等差数列前

n 项和从公式的形成、特点等方

面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前

n 项和公式

的推导有着本质的不同,这对生的思维是一个突破,另外,对于

q = 1 这一特殊情况,生往往

容易忽视,尤其是在后面使用的过程中容易出错。

三。目标。

根据大纲的要求、本节材的特点和本班生的认知规律,本节目标确定为: (1)知识技能目标————理解并掌握等比数列前

n 项和公式的推导过程、公式的特点,在此

基础上,并能初步应用公式解决与之有关的问题。

(2)过程与方法目标————通过对公式推导方法的探索与发现,向生渗透特殊到一般、类

比与转化、分类讨论等数思想,培养生观察、比较、抽象、概括等逻辑思维能力和逆向思维的

---

-

能力。

(3)情感,态度与价值观————培养生勇于探索、敢于创新的精神,从探索中获得成功的

体验,感受数异美、结构的对称美、形式的

简洁美。

四。重点 , 难点分析。

重点:公式的推导、公式的特点和公式的运用。

难点:公式的推导方法及公式应用中

q 与 1 的关系 。

五。法与法分析 。

培养习、会探究是全面发展生能力的重要前提, 是高中新程*的主要任务。如何培养习、会探究呢?建构主义认为: “知识不是被动吸收的, 而是由认知主体主动建构的。”这个观点从的角度来理解就是: 知识不是通过师传授得到的, 而是生在一定的情境中,运用已有的习经验,并通过与他人(在师指导和习伙伴的帮助下)协作,主动建构而

获得的,建构主义式强调以生为中心,视生为认知的主体,师只对生的意义建构起帮助和促进作用。因此,本节采用了启发式和探究式相结合的方法,让老师的主导性和生的主体性有机结合,使生能够愉快地自觉习,通过生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数型,再运用所得理论和方法去解决问题。一句话: 还堂以生命力,还生以活力。

六。

(一)创情境,提出问题。(时间定:

3 分钟)

[ 利用投影展示 ] 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,

对他说:我可以满足你的任何要求。西萨说:请给我棋盘的

64 个方格上,第一格放

1 粒小麦,第二

格放 2 粒,第三格放 4 粒,往后每一格都是前一格的两倍,直至第

64 格。国王令宫廷数算,

结果出来后,国王大吃一惊。为什么呢?

[这个情境目的是在引入题的同时激发生的兴趣,调动习的积极性。故事内容紧扣本节

的主题与重点 ]

---

-

提出问题 1:同们,你们知道西萨要的是多少粒小麦吗?

引导生写出麦粒总数 1

2

222

326

3(二)师生互动,探究问题 [5 分钟 ] 提出问题 2:1+ 2+ 2 + 2 +

23

+2

63

究竟等于多少呢 ?

) 有生会说:用算器来求(老师当然肯定这种做法,但生很快发现比较难求。 提出问题 3:同们,我们来分析一下这个和式有什么特征?(生会发现,

后一项都是前一项的 2

倍)

提出问题 4:如果我们把每一项都乘以

2,就变成了它的后一项,那么我们若在此等式两边同以

得到另一式:

[ [ 利用投影展示 ]

。.。S6463 1 2 2

2

3

2

2、。.。.。.。.(1)

2S64 22 2

2

3

2

46

42、。.。.。.(2)

比较( 1)(2 )两式,你有什么发现?(生经过比较发现:( 1)、( 2)两式有许多相同的项)

提出问题 5:将两式相减,相同的项就消去了,得到什么呢?。(生会发现:

S 64

26

41

[ 这五个问题的意图:层层深入,剖析了错位相减法中减的妙用,使生容易接受为什么要错

位相减,经过繁难的算之苦后,突然发现上述解法,也让生感受到这种方法的神

]

这时,老师向同们介绍错位相减法,并

提出问题 6:同们反思一下我们错位相减法求此题的过程,为什

么( 1)式两边要同乘以 2 呢?

[这个问题的意图 :让生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导

做好铺垫 ]

(三)类比联想,解决问题。 [ 时间定: 10 分钟 ]

提出问题 7: 等比数列 a a n 的首项为1, 公比为 q, 求它的前项和 Sn

即 S n a1 a2 a3

a

n

生开展合作习 , 讨论交流,老师**堂,发现有典型解法的,叫同

书在黑上。

[ 意图:从特殊到一般 ,从仿到创新 , 有利于生的知识迁移和能力提高,让生在探索过程

中,充分感受到成功的情感体验 ]

---

2,

-

(四)分析比较,开拓思维。 [ 时间定: 5 分钟 ]

将不同的的方法进等行比分析数评列价。{根an据},公生比的为认识q状,况它,的可前能有n如下项几和种方法:

错位相减法 1:

S

n

aa1 q a q

21

1

a q

n 2

a q

n 1

1

qSn

a1 q a1q

2

(1 q)Sn a1等比数列

a1 q a1q a1 qna1q

n2n1n

错位相减法2{ an },公比为

a2 a2

q

,它的前 n 项和

Sn a1

qS n

a3 a3

a n 1a

an an

n 1

an q

(1 q ) Sna1 an q

等比数列 {an },公比为

,它的前 n 项和

提出公比 q

qSn a

1a2 a3

2S a a q a q

n

1

1

aa1

n 1n

a q

1

1

n2

a q

1 1

n1

1 1

a

1

q(a a q

1a q

n 1n

n

3a q )

n2

aq

( Sn

a1q )

(1 q)Sn

a1 a1 q累加法

等比数列 { an },公比为 ,它的前 n 项和

q

aa

n 1

Sn a1 a2 a3

n

a2 a3 a4 an a2 a3

a1 q a2 q a3 q

an 1q

an q( a1 a2 a3

an 1 )

Sn a1 q( Sn an )

(1 q)Sn a1anq

可能也有同会想到由等比定理得

---

-

Sn a1 a2 a3

a2 a3

a1 a2 a2 a3

an

aaan an

n 1

q

q

即 a1 a2 San n 1

1 an q Sn

(1 q)Sn a1 anq

意图:共享习成果,开拓了思维,感受数异美 (五)。归纳提炼,构建新知。 [ 时间定: 3 分钟 ]

提出问题 8: 由

(1- q)s = aq

1? q 1 时是什么数列?此时 Sn ?

意图:通过反问精讲,一方面使生加深对知识的认识, 完善知识结构,增强思维的严谨性】

提出问题 9: 等比数列的前 n项和公式怎样 ?

a1 (1 q )

n

, q 1

a1 an q

Sn1 生归纳出 Sn

, q 1

1 q

na1, q 1 q

na1 , q 1

意图:向生渗透分类讨论数思想,加深对公式特征的了解 (六)层层深入,掌握新知 。[ 时间定: 15 分钟 ]

基础练习 1已知 an 是等比数列 , 公比为 q

(1)若a=,q=,则S 1 3

3n(2)。则a1

2, q 1,则Sn

练习 2 判断是非

n 2 1

1 (1 2 )

n(1)。1-2+4-8+16-

+ -2

2 3

n

1 ( 2)

n

1 (1 2 )

(2)。1 2

2

2

2

2

3

8

1 2

8a(1 a )

1 a

(3)。a a

a

a

意图:通过两道简单题来剖析公式中的基本量。进行正反两方面的“短、浅、快” 练习。通

---

-

过总结、辨析和反思,强化公式的结构特征。 】

例 1 已知数列 an 是等比数列 , 完成下表

n

8

an

Sn

8

( ) -2 -96

-6

33【意图:渗透方程思想 。通过公式的正用和逆用进一步提高生运用知识的能力 三求二 ”的题型 】

。掌握公式中 ”知

练习 3:求等比数列 1, 1 , 1 , ,

2 4 8 16

1 1 1

11前 8 项和;

63

变式 1、等比数列 2 , 4 , 8 ,16,

前多少项的和是 64 ;

111变式 2、等比数列

, , 1 , , 求第 5 项到第 10 项的和;

2 4 8 16

变式 3、等比数列 a,a,a,

2

3a, 求前 2n 项中所有偶数项的和。

n

(先由生独立求解,然后抽演,师**、指导,讲评生完成情况,寻找生中的闪光

点,给予热情表扬。 )

意图:变式训练 ,深化认识,增加思维的梯度的同时,提高生的式识别能力,渗透转化思

想】。

练习 4

有一位大生毕业后到一家私营企业去工作,试用期过后,老对这位大生很欣赏,

有意留下他,就让这位大生提出待遇方面的要求,这位生提出了两种方案让老选择,其一:

工作一年,月薪五千元;其二:工作一年,第一个月的工资为

20 元,以后每个月的工资是上月工资

的 2 倍,此时,老不假思索就选择了第二种方案,于是他们之间就订了一个劳动待遇合同。请你分析一下,老的选择是否正确?

意图: 让生进一步认识到数来源于生活并应用于生活,生活中处处有数

(七)总结归纳,加深理解。 [ 时间定: 2 分钟 ]

(1)等比数列的求和公式是什么?应用时要注意什么? (2)用什么方法可以推导了等比数列的求和公式?

意图:形成知识块,从知识的归纳延伸到思想方法的提炼,优化生的认知结构】

(八)后作业,巩固提高。 [ 时间定: 1 分钟 ]

必做:( 1)P66练习 1

---

-

研究性作业:请上网查阅“芝诺悖论”

选做:求和: 1 2 2 22 3 23 4 24

n

2n

意图:为了使所有生巩固所知识,布置了“必做题”

;“选做题”又为有余力者留有自

。】 由发展的空间,布置了“探究题”以利于生开展研究性习,拓展生的视野

七、反思:

本节立足本,着力挖掘,合理,层次分明。充分体现以生发展为本,培养生的观察、概括和探究能力, 遵循生的认知规律,体现理论联系实际、循序渐进和因材施原则,

通过问题情境的创,激发兴趣,使生在问题解决的探索过程中,由会走向会,由被动答题走向主动探究。在思想上既注重知识形成过程的,还特别突出习方法的指导,探究

能力的训练,引导生发现数的美,体验求知的乐趣。

点击查看更多课文《黄山奇石》教学设计模板相关内容»

转载请注明出处:https://www.904b.cn/articles/32139.html

热门阅读

  1. 学生假期社会实践活动报告
  2. 写秋天的诗句精选
  3. 感恩节的暖心祝福语大全
  4. 《我的老师》优秀备课教案
  5. 疾病预防培训心得范文
  6. 新版个人房屋租赁合同范本
  7. 201二年级语文上册教学计划
  8. 201年五四青年节群发短信祝福语大全
  9. 短期工合同模板
  10. 创意感人的生日祝福语
  11. 伟大的平凡为主题的师德演讲稿
  12. 地球一小时活动感想的优秀作文
  13. 关于重阳节的经典诗词
  14. 《蝙蝠和雷达》的课堂教学设计
  15. 国庆节见闻小学生作文400字
  16. 2016小学家长教育孩子的心得体会
  17. 小象吹泡泡童话故事
  18. 形容爱情温暖的句子
  19. 新员工入职培训感受心得
  20. 关于运动的快乐的散文
  21. 告诉全世界情感美文
  22. 2016最新的师风师德培训心得体会
  23. 雪中梅散文
  24. 小水点历险记儿童童话故事
  25. 中学生寒假学习计划
  26. 大学生寒假电子厂社会实践报告范文
  27. 写离别之情的诗句
  28. 学习的经典谚语20则
  29. 拔苗助长的故事300字
  30. 全世界路过经典语录
  31. 浅析当今视角下竞技运动文化发展规律论文
  32. 关于小年的古诗句
  33. 丑小鸭的故事作者
  34. 小学语文别饿坏了那匹马教学设计
  35. 个性qq签名搞笑语句大全
  36. 2018新年展望贺词
  37. 201感恩教师节的作文
  38. N开头的英语谚语
  39. 55天的夫妻故事
  40. 解析王维山水诗中的禅意
网页更新时间:2025-08-29 02:55:18
本页面最近被 885 位网友访问过,最后一位访客来自 天津,TA在页面停留了 74 分钟。
← 返回首页